Generic Management Procedures for data-poor fisheries: forecasting with few data

Helena Geromont

MARAM (Marine Resource Assessment and Management Group) Department of Mathematics and Applied Mathematics University of Cape Town, Rondebosch 7701, South Africa

Fisheries management

Key management questions:

Where are we? Not sure Where do we go? To target: 0.5K (1.2B_{MSY}) Stay above limit: 0.2K (0.5B_{MSY})

How do we get there? Management Procedures: simple harvest control rules that have been simulation tested to show robustness to uncertainty.

The problem

Stock status unknown:

Some knowledge of current depletion interval [?< B/K<?]

Few data:

Some knowledge of life-history parameters: *M*, growth parameters A catch time-series Mean length ("data-limited") or Index of abundance ("datamoderate")

High levels of uncertainty:

Data-poor, poor data and poor assumptions

Simulation test!

The challenge

Account for uncertainty: model uncertainty process error observation error implementation error Balance management objectives and trade-offs: Maximise future catch Minimise risk of resource depletion Need a harvest control rule with feedback Need simple and cheap management solution that works!

Management Procedure Approach

MP approach: 7 steps

Basic approach

Group stocks in depletion/productivity baskets:

Productivity/ Depletion	Low	Medium	High
Severely	M:U[0.05,0.2]	M:U[0.2,0.4]	M:U[0.4,1]
	B/K:U[0.1,0.3]	B/K:U[0.1,0.3]	B/K:U[0.1,0.3]
Moderately	M:U[0.05,0.2]	M:U [0.2,0.4]	M:U[0.4,1]
	B/K:U[0.3,0.5]	B/K:U[0.3,0.5]	B/K:U[0.3,0.5
Near target	M:U[0.05,0.2]	M:U[0.2,0.4]	M:U[0.4,1]
	B/K:U[0.5,0.7]	B/K:U[0.5,0.7]	B/K:U[0.5,0.7]

Set up operating model (Age Structured Production Model): Bayes-like approach: sample from distributions for key model parameters (no fitting to data!)

Operating model (ASPM)

Model uncertainty: parameter distributions

 Depletion:
 B/K: U[0.1,0.3]

 Natural mortality rate:
 M: U[0.2,0.4]

 Steepness of S-R:
 h: U[0.5,0.9]

Process error:

Logistic selectivity-at-age: Beverton-Holt stock-recruitment: Log-normal CV=0.4 Log-normal CV=0.5

Observation error:

Mean length of catch: Index of abundance: Log-normal CV=0.25 Log-normal CV=0.2

Implementation error:

Catch time series:

Log-normal CV=0.2

Generated data:

Mean Length (L)

Index of abundance (I)

Annual historic mean length (left) and CPUE (right) data generated by the operating model (30 from a total of 8000 simulations shown here).

Management Procedures

Constant catch (CC):

Step-wise CC (LstepCC):

Length L target (Ltarget):

 $TAC_{y+1} = TAC^* = (1-x)C^{ave}$

$$TAC_{y+1} = TAC_y \pm \text{step}$$

$$TAC_{y+1} = 0.5TAC^* \left[1 + \left(\frac{L_y^{recent} - L^0}{L^{t \operatorname{arg} et} - L^0} \right) \right]$$

Index I Slope (Islope):

Index I target (Itarget):

$$TAC_{y+1} = TAC_{y}(1 + / s_{y})$$
$$TAC_{y+1} = 0.5TAC^{*} \left[1 + \left(\frac{I_{y}^{recent} - I^{0}}{I^{t \arg et} - I^{0}} \right) \right]$$

L=mean length of catch
/= index of abundance (CPUE or survey)

Stochastic projections: No implementation error

 $B^{sp}/B^{sp}(MSY)$

Annual catch (tons)

Summary statistics: all MPs

Performance trade-offs: Yield versus risk

Median average catch plotted against the 10%-ile values for final spawning biomass depletion

Stochastic projections: with implementation error

B^{sp}/B^{sp}(MSY)

Annual catch (tons)

Summary statistics: robustness tests for target HCR based on mean length data (Ltarget4)

Initial conclusions

Index-based MPs better than very data-poor MPs based on mean length of catch

Length-based MPs perform surprisingly well

Need feed-back control!

Require some reliable index of abundance: mean length or CPUE/survey

HCR not robust outside depletion/production range

Future work

Simulation test more HCRs for different data types Generic OMs for each "basket" with different production and depletion levels Conduct additional robustness tests (uncertainty about growth parameters) Implementation: selection of HCRs for application to "real" stocks/fisheries

Thank you

Research results reported here form part of my doctoral study. I thank Dr Butterworth for his supervision and the National Research Foundation (NRF) of South Africa for the financial assistance towards this research.

